This package was first designed to set breakpoints for truncating the plot as I need to shrink outlier long branch of a phylogenetic tree.
Axis break or a so call gap plot is useful for large datasets that are not normally distributed and contain outliers. Sometimes we can transform the data (e.g. using log-transformation if the data was log-normal distributed) to solve this problem. But this is not always granted. The data may just simply contain outliers and these outliers are meaningful. A simple gap plot can solve this issue well to present the data in detail with both normal and extreme data.
This package provides several scale functions to break down a ‘gg’
plot into pieces and align them together with (gap plot) or without
(wrap plot or cut plot) ignoring subplots. Our methods are fully
compatible with ggplot2
, so that users can still use the
+
operator to add geometric layers after creating a broken
axis.
If you use ggbreak in published research, please cite the following paper:
For creating gap plot, we only provide scale_x_break
and
scale_y_break
functions. Currently, it is not allowed to
apply both functions to set breakpoints for both x and y axes. However,
multiple breakpoints on a single axis are supported.
After breaking the plot, we can still superpose geometric layers and set themes.
library(ggplot2)
library(ggbreak)
library(patchwork)
set.seed(2019-01-19)
d <- data.frame(x = 1:20,
y = c(rnorm(5) + 4, rnorm(5) + 20, rnorm(5) + 5, rnorm(5) + 22)
)
p1 <- ggplot(d, aes(y, x)) + geom_col(orientation="y")
d2 <- data.frame(x = c(2, 18), y = c(7, 26), label = c("hello", "world"))
p2 <- p1 + scale_x_break(c(7, 17)) +
geom_text(aes(y, x, label=label), data=d2, hjust=1, colour = 'firebrick') +
xlab(NULL) + ylab(NULL) + theme_minimal()
p1 + p2
Users can apply scale transform functions, such as
scale_x_log10
and scale_x_sqrt
, to axis break
plot.
facet_grid
and
facet_wrap
set.seed(2019-01-19)
d <- data.frame(
x = 1:20,
y = c(rnorm(5) + 4, rnorm(5) + 20, rnorm(5) + 5, rnorm(5) + 22),
group = c(rep("A", 10), rep("B", 10)),
face=c(rep("C", 5), rep("D", 5), rep("E", 5), rep("F", 5))
)
p <- ggplot(d, aes(x=x, y=y)) +
geom_col(orientation="x") +
scale_y_reverse() +
facet_wrap(group~.,
scales="free_y",
strip.position="right",
nrow=2
) +
coord_flip()
pg <- p +
scale_y_break(c(7, 17), scales="free") +
scale_y_break(c(19, 21), scales="free")
print(pg)
pg + labs(title="test title", subtitle="test subtitle", tag="A tag", caption="A caption") +
theme_bw() +
theme(
legend.position = "bottom",
strip.placement = "outside",
axis.title.x=element_text(size=10),
plot.title = element_text(size = 22),
plot.subtitle = element_text(size = 16),
plot.tag = element_text(size = 10),
plot.title.position = "plot",
plot.tag.position = "topright",
plot.caption = element_text(face="bold.italic"),
)
require(ggplot2)
library(ggbreak)
set.seed(2019-01-19)
d <- data.frame(
x = 1:20,
y = c(rnorm(5) + 4, rnorm(5) + 20, rnorm(5) + 5, rnorm(5) + 22),
group = c(rep("A", 10), rep("B", 10))
)
p <- ggplot(d, aes(x=x, y=y)) +
scale_y_reverse() +
scale_x_reverse() +
geom_col(aes(fill=group)) +
scale_fill_manual(values=c("#00AED7", "#009E73")) +
facet_wrap(
group~.,
scales="free_y",
strip.position="right",
nrow=2
) +
coord_flip()
p +
scale_y_break(c(7, 10), scales=0.5, ticklabels=c(10, 11.5, 13)) +
scale_y_break(c(13, 17), scales=0.5, ticklabels=c(17, 18, 19)) +
scale_y_break(c(19,21), scales=1, ticklabels=c(21, 22, 23))
p <- ggplot(mpg, aes(displ, hwy)) +
geom_point() +
scale_y_continuous(
"mpg (US)",
sec.axis = sec_axis(~ . * 1.20, name = "mpg (UK)")
) +
theme(
axis.title.y.left = element_text(color="deepskyblue"),
axis.title.y.right = element_text(color = "orange")
)
p1 <- p + scale_y_break(breaks = c(20, 30))
p2 <- p + scale_x_break(breaks = c(3, 4))
p1 + p2
The scale_wrap()
function wraps a ‘gg’ plot over
multiple rows to make plots with long x-axes easier to read.
p <- ggplot(economics, aes(x=date, y = unemploy, colour = uempmed)) +
geom_line()
p + scale_wrap(n=4)
Both categorical and numerical variables are supported.
The scale_x_cut
or scale_y_cut
cuts a ‘gg’
plot to several slices with the ability to specify which subplots to
zoom in or zoom out.
The space
parameter in scale_x_break()
,
scale_y_break()
, scale_x_cut()
and
scale_y_cut()
allows user to control the space between
subplots.
## original plot
p1 <- ggplot(mpg, aes(displ, hwy, color=factor(cyl))) + geom_point()
## ggbreak plot without legend
p2 <- p1 + scale_x_break(c(3, 4)) +
theme(legend.position="none")
## extract legend from original plot
leg = cowplot::get_legend(p1)
## redraw the figure
p3 <- ggplotify::as.ggplot(print(p2))
## place the legend
p3 + ggimage::geom_subview(x=.9, y=.8, subview=leg)
The features we introduced for scale_x_break
and
scale_y_break
also work for scale_wrap
,
scale_x_cut
and scale_y_cut
.
You can use aplot::plot_list()
to arrange
ggbreak
objects with other ggplot
objects. For
other functions, such as cowplot::plot_grid()
and
gridExtra::grid.arrange()
, you need to explictly call
print()
to ggbreak
object, see also https://github.com/YuLab-SMU/ggbreak/issues/36.
Using print()
is a secret magic to make
ggbreak
compatible with other packages, including export.